AT OLYMPIAD QUESTIONS

MATHEMATICS

ASSESSMENT TEST

VI - CLASS

NUMBER SYSTEM

1.	Assertion (A) : Even	× Even × × Even ()	Even number of times) is	s even.	[]
	Reason (R) : Even nu a) Both A and R are c b) Both A and R are c c) A is correct, R is in d) A is incorrect R is c	The second secon	egral power gives even n explanation of A. correct explanation of A.	umber.		
2.	A perfect number amo a) 14	ong the following is b) 16	c) 28	d) 56	[]
3.	 Statement (A) : A number is divisible by '2' then the number is divisible by 4. Statement (B) : A number is divisible by '4' then the number is divisible by 2. a) Both A and B are true b) Both A and B are false c) A is true and B is false d) A is false and B is true]
4.	If the number $27 x 4$ is a) 2	b) 5	e least digit to replace ' x c) 0	' is d) 8	[]
5.	The number of diviso a) 9	rs of 1080 is b) 32	c) 16	d) 7	[]
6.	The H.C.F. of 1026, 1 a) 72	215 and 2349 is b) 27	c) 702	d) 207	[]
7.	Assertion (A) : H.C.I	F. of $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$ is $\frac{1}{12}$.			[]
	Reason (R) : H.C.F.	of fractions = $\frac{\text{H.C.F.}}{\text{L.C.M.c}}$	of numerators of denominators.			
	a) Both A and R are cb) Both A and R are cc) A is correct, R is in	orrect and R is the correct but R is not the correct.	ect explanation of A. correct explanation of A. d) A is incorrect, R is	correct.		
		COMMERCIAL	MATHEMATICS			
1.	If 0.75 : x : : 5 : 6, the a) 1.50	n x is equal to b) 0.9	c) 9	d) 15	[]

2. Oranges are bought at 5 for ₹10 and sold at 6 for ₹15. The gain percent is : [] a) 50% b) 40% c) 35% d) 25%

3.	Assertion (A) : By	decreasing 25% of 24 f	from it, we get 18.		[]
	Reason (R) : Decre	ase $\% = \frac{\text{Decrease in v}}{\text{Original val}}$	$\frac{value}{ue} \times 100\%$			
	a) Both A and R areb) Both A and R arec) A is correct, R is is	correct and R is correct correct but R is not co ncorrect	ct explanation of A rrect explanantion of A d) A is incorrect, I	R is correct		
4.	The mean proportion a) 42	n of 49 and 36 is b) 39	c) 54	d) 12	[]
		EXPONENTS	S AND POWERS			
1.	Assertion (A) : (-1) Reason (R) : $a^m \times a^m$ a) Both A and R are b) Both A and R are	$a^{123} \times (-1)^{123} = 1$ $a^n = a^{m+n}$, $(-1)^{\text{even number}}$ correct and R is the co correct but R is not the	= -1 prrect explanation to A.	А.	[]
	c) A is incorrect, R i	s correct.	d) A is correct, R	is incorrect.		
2.	If $\left(\frac{1}{5}\right)^{x} = (125)^{4}$, the	en the value of x is			[]
	a) 12	b) -12	c) 125	d) 25		
3.	The scientific notation a) 21×10^7	on of 0.0000021 is b) 2.1 × 10 ⁸	c) 2.1×10^{-6}	d) 2.1 × 10	[) ⁻⁸]
4.	If $x + y = 8$ and $2^{x} + a$ a) $x = 3, y = 5$	$2^{y} = 40$, then b) x = 5, y = 3	c) xy = 15	d) x = 1, y	[= 7]
		GEO	METRY			
1.	In the given figure,	\overline{OB} is parallel to \overline{PO} ,	$ OAD = 60^\circ, ACQ = 1$	$10^{\circ}, ADC = x^{\circ},$	DAC	$= v^{\circ}$,
	$ BAC = z^{\circ}$. The value	lues of x, y and z are			[]
	a) (60°, 50°, 70°)		$0 \longrightarrow 60^{\circ}$	A	В	
	b) (30°, 40°, 50°)					
	c) (40°, 30°, 70°)		X	110°		
	d) (20°, 30°, 40°)		P D	′ С	Q	
2.	An angle whose means a) acute angle	asure is greater than 18 b) right angle	0° and less than 360° is c) obtuse angle	s called a d) reflex ar	[ngle]

3. Statement (A) : If $|PQR| = 135^\circ$, then $\frac{4}{3}|PQR| = 175^\circ$ [] Statement (B) : The bisector of an angle divides it into two equal angles. a) Both A and B are true b) Both A and B are false c) A is true, B is false d) A is false, B is true

- 4. In the following figure, the value of 'a'. is
 - a) 70°
 - b) 80°
 - c) 90°
 - 1. 1.000
 - d) 100°

MENSURATION

5. The area of a square is 49 sq.cm. A rectangle has the same perimeter as the square. If the length of the rectangle is 9.3cm, then ſ b) the area of a rectangle is 35.48cm² a) the breadth of a rectangle is 4.7cm c) the breadth of a rectangle is 3.5 cm d) the area of a rectangle is 43.71 cm^2 6. Length of a rectangle is 8 cm longer than its width. A square of side x centimeters is cut out of it. If 'x' centimeters is half the width of the rectangle, then the remaining area is square centimeters is 1 a) $3x^2 + 16x$ b) $2x^2 + 8x$ c) $3x^2 + 8x$ d) $2x^2 + 16x$ The length of a given rectangle is increased by 20% and the breadth is decreased by 20%. Then 7. the resulting area is a) Remains the same b) Increases by 5% c) Decreases by 4% d) Decreases by 5% DATAHANDLING In a family, age (in years) of members Krishna, Ravi, Priya and Nikhil are 23, 47, 13, 15, then the 1. mean of their ages 5 years ago is] ſ b) 24.5 c) 23.5 a) 59 d) 58 2. The median of the data 39, 38, 10, 15, 23, 16, 8, 90 is 1 ſ c) 18.5 a) 16 b) 23 d) 19.5 The difference between the largest and smallest observations in a data set is 3.] ſ a) mode b) median c) range d) mean **VII - CLASS EXPONENTS AND POWERS** 1. If $7^{x-y} = 49$ and $7^{x+y} = 343$, then 6x + 2y =[] b) 16 d) 24 a) 12 c) 20 2. **Passage** : If a, $b \in \mathbb{R}$, $a \neq 0$, $b \neq 0$ and m, $n \in \mathbb{Z}$ then iv) $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$ iii) $\frac{a^m}{a^n} = a^{m-n}$ ii) $a^m x b^m = (ab)^m$ i) $a^{m} x a^{n} = a^{m+n}$ Answer the following : i) If $2^x = 32$, then $2^{x+2} =$ [] c) 16 d) 34 a) 64 b) 128

3

[]

ii) If
$$5^{x-2} = 5$$
, then $x =$ []
a) 1 b) 2 c) 3 d) 4
iii) If $3^m \times 4^m = 1$, then $m =$ []
a) 0 b) 12 c) 1 d) 1/12
3. Scientific notation of 2012 is
a) 2012 b) 201.2 × 10¹ c) 20.12 × 10² d) 2.012 × 10³
4. If $x + y = 8$ and $2^x + 2^y = 40$, then $x - y =$ []
a) -1 b) 0 c) 1 d) 2
5. If $60^a = 3$ and $60^b = 5$, then $12^{\left(\frac{1-a-b}{2(1-b)}\right)}$ is []
a) $\sqrt{3}$ b) 2 c) $\sqrt{5}$ d) 3

MATRICES

1.	The matrix $B = [b_{ij}]_{2}$	x_{2} , whose element b_{ij} is g	given by $\mathbf{b}_{ij} = \frac{(i+2j)^2}{2}$	S	[]
	a) $\begin{bmatrix} 9 & 25\\ 2 & 2\\ 8 & 18 \end{bmatrix}$	b) $\begin{bmatrix} 4 & 3 & 7 \\ 6 & 8 & -4 \end{bmatrix}$	c) $\begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$	d) $\begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$		
2.	$A = \begin{bmatrix} -1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & x & 7 \end{bmatrix} $ is a s	symmetric matrix then x	=		[]
	a) 2	b) 3	c) 5	d) 6		
3.	The product of the cof a) -190	factors of 3 and -2 in $\begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix}$	$\begin{bmatrix} 0 & -2 \\ -1 & 2 \\ 5 & 6 \end{bmatrix}$ is	d) 19	[]
4.	If $A = \begin{pmatrix} 1 & 3 & -5 \\ 2 & -1 & 5 \\ 1 & 0 & 1 \end{pmatrix} t$	hen trace of A is	-, -	-, -,	[]
	a) 1	b) – 1	c) 3	d) 2		
5.	If the matrix $\begin{bmatrix} x & b & a \\ 1 & 1 & b \\ 0 & x & a \end{bmatrix}$	$\begin{bmatrix} b \\ 1 \\ a \end{bmatrix}$ is singular, then $x = _$			[]
	a) 1	b) –3	c) a, b	d) 0		

NUMBER SYSTEM

1.	If d(N) represents num	her of divisors of N they				
•	a) 4	b) 5	n d(d(18)) is c) 6	d) 9	[]
2.	Assertion (A) : Numb Reason (R) : Number a) Both A and R are co b) Both A and R are co c) A is correct, R is wr	er of odd divisors of 32 of odd divisors of the nu prrect and R is correct ex prrect but R is not correc ong	is 1 umber in the form 2 ^K is 1 uplanation of A t explanation of A d) A is wrong, R is corr	rect	[]
3.	If 1 ! +2 ! +3 ! + a) 8	+ 100 ! is divided by 2 b) 9	4, then the remainder is c) 5	d) 0	[]
4.	If $ x < a$ then				[]
	a) –a < x < a	b) $x \in [-a, a]$	c) $x \in (-a, a)$	d) $x \in [-a, a)$		
5.	The last four digits in t a) 1001	he binary representation b) 0001	of (8009) ₁₀ is c) 0101	d) 1010	[]
6.	Assertion (A) : $\sqrt{-1}$	$<\sqrt{-2}=\sqrt{2}$			[]
	a) Both A and R are co b) Both A and R are co c) A is correct, R is inc	orrect and R is the correct orrect but R is not the contract orrect PLANE GE	et explanation of A rrect explanation of A d) A is incorrect, R is co OMETRY	orrect		
1.	An angle when added a) 120°	to one - sixth of its comp b) 50°	blement equals to 40° , the c) 30°	then the angle is d) 60°	[]
2.	ABC and DEF are two	o similar triangles such	that $BC = 4cm$, $EF = 5c$	em and area of	ΔAB	C =
	64cm ² , then the area of a) 100cm ²	f $\triangle DEF$ is b) 115cm ²	c) 120cm ²	d) 125cm ²	[]
3.	In $\triangle ABC$ if $DE \parallel BC$, then $\frac{AD}{AB} =$			[]
	a) $\frac{AE}{EC}$	b) $\frac{AE}{AC}$	c) $\frac{AC}{AE}$	d) $\frac{DE}{BC}$		
4.	The number of diagona a) 35	als in decagon is b) 28	c) 21	d) 14	[]
5.	In $\triangle ABC$ a = 4cm, b =	= 5 cm, c = 3 cm, then the	length of median m_{b} is	<i>a) i i</i>	[]
	a) 2	b) 2.5	c) 3	d) 4		
		POLYNO	MIALS			

2. If $x^2 + ax + b$ and $x^2 + bx + a$ are exactly divisible by (x - p), then the common factor is

a) (x+1) b) (x-1) c) (x-2) d) (x-4) []

3.	(b - c + d + a) (d + a - a) 3(ad + bc)	b + c) + (c - d + a + b) b) 2(ad + bc)	(b + c + d - a) = c) 4(ad + bc)	d) (ad + bc)	[]
4.	If $(2010^{2011} + 2011^{2011})$	is divided by (4021), the	hen the remainder is		[]
	a) 0	b) 1	c) 2	d) 3		
	(COMMERCIAL M	IATHEMATICS			
1.	A shopkeeper sells two 20% on the other. Ther	T.V. sets at the same print the loss percentage is	ce. There is a gain of 204	% on one T.V. a	nd los [s of]
	a) 4%	b) 65	c) 10%	d) 8%		
2.	A train 120m long i 180 m long is	s running at 54 km/hr	Then how much tin	ne will it pass	a bri [dge]
	a) 15 sec	b) 35 sec	c) 20sec	d) 40sec		
3.	Reena can knit a pullov much time would they	ver in 6 hours while Tina take to knit 7pullovers	a can do it in 8 hours. Wo s	orking together,	then [how]
	a) 48 hours	b) 24 hours	c) 12 hours	d) 36 hours		
		DATA HAN	NDLING			
1.	The number of observ remaining 30 is 3.5, the	rations in a group is 40. en the average of the wh	If the average of first ol e group is	10 is 4.5 and t	hat of [the]
	a) $\frac{1}{5}$	b) $\frac{15}{4}$	c) 6	d) 8		
2.	If the difference betwe	en mean and mode is 63	, then difference betwee	n mean and me	dian is	S
	a) 21	b) 31.5	c) 48.5	d) 189	[]
3.	Mean of the numbers 1	1, 2, 3 n with respectiv	ve weights $1^2 + 1, 2^2 + 2$	$2, 3^2 + 3, \dots n^2$	+ n is ſ	1
	a) $\frac{3n+2}{2}$	b) $\frac{3n+1}{4}$	c) $\frac{2n+1}{3}$	d) $\frac{3n(n+1)}{2(2n+1)}$	-	-
		VIII - C	LASS			
		LOGARI	THMS			
1.	$3^{\sqrt{\log_3 7}} - 7^{\sqrt{\log_7 3}} =$ a) 0	b) 1	c) – 1	d) 2	[]
2.	If $x > 1$, then the least a) 2	value of $2 \log_{10} x - \log_x b) 4$	0.01 is c) 6	d) 8	[]
3.	If $\log_{30} 3 = a$, $\log_{30} 5 = a$) 3 (1 + a + b)	b, then the value of $\log_3 b$ b) 3 (1 + a - b)	$_{0}^{0}$ 32 in terms of a, b is c) 5 (1 - a - b)	d) 3 (1 − a + b])]
4.	If $\frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_4 a}$	$\frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \dots \text{ to r}$	h terms = $\frac{n(n+1)}{2k}$, then	k =	[]
	a) $\log_a 2$	b) $\log_a 4$	c) $\log_2 a$	d) $\log_4 a$		

5.	If $a^2 = b^2 + c^2$, the	$\operatorname{en} \frac{1}{\log_{a-b} c} + \frac{1}{\log_{a+b} c} =$			[]
	a) 0	b) 1	c) – 1	d) 2		
		1 1				

6. If
$$5^{x} = (0.5)^{y} = 1000$$
, then $\frac{1}{x} - \frac{1}{y} =$

a) 1
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) $\frac{1}{4}$

7. If $\log_{10} 3 = 0.4771$, then the number of digits in 3^{40} is[a) 20b) 21c) 22d) 23

TRIGONOMETRY

1.	If $\tan x = \frac{b}{a}$ then the value of a cos2x + bsin 2x is					
	a) a	b) a – b	c) a + b	d) b		
2.	A+ B = 60° then \cos^2	$A + \cos^2 B - \cos A \cos B$	=		[]
	a) $\frac{1}{4}$	b) $\frac{2}{3}$	c) $\frac{3}{4}$	d) $\frac{4}{3}$		
3.	$\tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ}$	$+ \tan 81^{\circ} =$			[]
	a) 4	b) 3	c) 2	d) 1		
4.	If $A + B + C = 180^{\circ}$, a) 4sinA cosB sinC c) 4cosA cosB sinC	then sin2A + sin2B – sin	n2C= b) 4cosA sinB sinC d) 4cosA sinB cosC		[]
5.	Assertion (A): tan 40	0° + tan 80° - $\sqrt{3}$ tan 40°	$\tan 80^\circ = -\sqrt{3}$		[]
	Reason (R) : $tan(A+B) = tan A + tan B + tan(A+B)tan A tan B$ a) Both A and R are correct and R is correct explanation of A b) Both A and R are correct and R is not correct explanation of A c) A is correct, R is incorrect d) A is incorrect, R is correct					
		SETS AND RI	ELATIONS			
1.	The number of all poss a) 3	b) 3 !	2, 3, 5} is : c) 7	d) 8	[]
2.	Let $A = \{0, 1, 3, 4\} B$	= {5, 6, 1, 3, 9} and C =	= {0, 1, 2, 3, 9, 13}. The	en, $(A \cap B) \cup C$	is	
	a) {0, 1, 2, 4, 9, 13} c) {0, 1, 3}		b) {0, 1, 2, 3, 9, 13} d) {1, 3}		[]
3.	A group of 30 people to coffee, then the number	take either tea or coffee r of people who take tea	. If 12 people do not tal	ke tea and 15 pe	eople	take]
4	a) 18 The relation > is	b) 16	c) 15	d) 12	г	1
4.	a) reflexive $reflexive$	b) symmetric	c) transitive	d) equivalence	L e]
		-, -, -, -, -, -, -, -, -, -, -, -, -, -	-,	-) equivalence	-	

- 5. If n(A B) = 25 + x, n(B A) = 2x and $n(A \cap B) = 2x$ and if n(A) = 2n(B), then the value of x is a) 1 b) 5 c) 4 d) 6
- 6. If n(A) = 8 and n(B) = 5, then the minimum number of elements in $A \cup B$ is [] a) 6 b) 7 c) 8 d) 13

SURDS

1. If
$$a = \sqrt{17} - \sqrt{16}, b = \sqrt{15} - \sqrt{14}$$
 then
a) $a > b$ b) $a < b$ c) $a = b$ d) $a + b = 0$
2. $\frac{2}{\sqrt[3]{9} - \sqrt[3]{3} + 1} - \frac{1}{\sqrt[3]{9} + \sqrt[3]{3} + 1} =$ []
a) 1 b) -1 c) $\sqrt[3]{3}$ d) $-\sqrt[3]{3}$

3. If
$$1 \le a \le 2$$
, then $\sqrt{a + 2\sqrt{a - 1}} - \sqrt{a - 2\sqrt{a - 1}} =$ []
a) $2\sqrt{a - 1}$ b) $\sqrt{a - 1}$ c) $\sqrt{a + 1}$ d) $\frac{1}{2}\sqrt{a - 1}$

POLYNOMIALS

1. If
$$f(x) = x + x^9 + x^{25} + x^{49} + x^{81}$$
 is divided by $(x^3 - x)$, then the remainder is []
a) x^{27} b) $x^2 + 5x + 1$ c) $5x^2$ d) $5x$
2. If $f(x)$ is a real function such that $f(x + y) = f(xy)$ and $f\left(\frac{-2}{3}\right) = \frac{2}{3}$ for all x, y then $f(2001) =$
a) 2001 b) $\frac{-2001}{3}$ c) $\frac{2001}{3}$ d) $\frac{2}{3}$ []
3. If α, β, γ are the roots of $x^3 + qx + r = 0$, then $\alpha^2 + \beta^2 + \gamma^2 =$ []
a) $-2q$ b) $-3r$ c) $2q^2$ d) $-6q$

NUMBER SYSTEM

 $\left[\sqrt{1}\right] + \left[\sqrt{2}\right] + \left[\sqrt{3}\right] + \dots \left[\sqrt{100}\right] =$ 1. [] a) 560 b) 660 c) 625 d) 624 If 5^{99} is divided by 13, then the remainder is 2. [] a) 07 b) 13 c) 12 d) 08 The value of $\sqrt{5\sqrt{5\sqrt{5....}}}$ is 3. [] a) 0 b) 125 c) 5 d) - 5

IX - CLASS

PERMUTATIONS AND COMBINATIONS

1.	The number of ways in alternatively is	n which 5 boys and 5 g	irls can sit in a row so t	hat the boys an	nd girl	s sit 1
	a)14,400	b) 28,800	c) 26,500	d) 18, 400	L	1
2.	S_1, S_2, \dots, S_{10} are the sp	eakers in a conference.	If S ₁ addresses only after	$r S_2$, then the r	numbe	er of
	ways the speakers addr	ess is :		-	[]
	a) 10!	b) 9!	c) 10×8!	d) $(10!)/2$		
3.	$1 + 1 \times 1! + 2 \times 2! + 3 \times 3$	$!+\ldots+n\times n!=$			[]
	a) n!	b) $(n-1)!$	c) $(n+1)!$	d) $n \times (n+1)!$		
4.	The number of quadrat	ic expressions with the	coefficients drawn from	the set {0,1,2,3	} is [1
	a) 27	b) 36	c) 48	d) 64	L	L
5.	The number of ways in ing the relative position	which the letters of the ns of vowels and conson	word ALGEBRA can be ants is	arranged with	out cha [ang-]
	a) 36	b) 54	c) 72	d) 144		
		QUADRATIC H	EQUATIONS			
1.	If $3 + 4i$ is a root of the	e equation $x^2 + px + q =$	0, then		[]
	a) p = 6, q = 25	b) p = 6, q = 1	c) $p = -6, q = -7$	d) p = - 6, q =	= 25	
2.	The ratio of the roots	of the equation $ax^2 + bx^2$	x + c = 0 is same as the	ratio of the ro	ots of	the
	equation $px^2 + qx + qx$	$\mathbf{r} = 0$. If \mathbf{D}_1 and \mathbf{D}_2 are	the discriminants of ax^2	+bx + c = 0 and	$d px^2$ -	+ qx
	+ r = 0 respectively, the	en $D_1 : D_2$ is			[]
	a) $a^2 : p^2$	b) b ² : q ²	c) $c^2 : r^2$	d) b : q		
3.	The value of a for which	ch each one of the roots	of $x^2 - 4ax + 2a^2 - 3a + 5$	5 = 0 is greater t	han 2	, are
					[]
	a) $a \in (1, \infty)$	b) a = 1	c) $a \in (-\infty, 1)$	d) $a \in (9/2, \infty)$	»)	
1	If y is need than the min	$x^2 - x +$	1		г	1
4.	II X IS leaf then the linit	$\frac{1}{x^2 + x + x}$	$\overline{1}$ is		L	1
	a) 1/3	b) 3	c) 1/2	d) 1		
5.	If a, b, c are the sides o	f a triangle then the rang	ge of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ is		[]
	a) [1, 2]	b) (-∞,1]∪[2,∞)	c) zero	d) $\left[1,\frac{3}{2}\right]$		
		LOGARI	THMS			
	1 1					

1.
$$\frac{\overline{\log_3 \pi} + \overline{\log_4 \pi}}{a) \text{ is equal to } 2} \qquad []$$

a) is equal to 2 b) is less than 2 c) is greater than 2 d) cannot be determined
2. If $\log x = \log (a + b) + \log (a^2 - ab + b^2)$, then $x =$
a) $a^3 + b^3$ b) $a^2 + b^2$ c) $a + b$ d) ab

3.
$$\log_2\left(1+\frac{1}{2}\right) + \log_2\left(1+\frac{1}{3}\right) + \dots + \log_2\left(1+\frac{1}{31}\right) =$$
 []
a) 0 b) 1 c) 5 d) 4

4. If
$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{43} n} = \frac{1}{\log_x n}$$
, then $x =$

a) 43 b) 43ⁿ c) 43! d) n⁴³

5. If
$$a^{x} = b^{y} = c^{z} = d^{w}$$
, then $\log_{a} (bcd) =$ []
a) $x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$ b) $\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$ c) $x \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w}\right)$ d) $\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w}\right)$

FUNCTIONS

1. If
$$f(x)$$
 is a function such that $f(x + y) = f(x) + f(y)$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r) = [$
a) $\frac{7n}{2}$ b) $\frac{7(n+1)}{2}$ c) $7n(n+1)$ d) $\frac{7n(n+1)}{2}$

2. If $f: R \to R$ and $g: R \to R$ defined by f(x) = 5x + 1 and g(x) = 3 - 2x, then $(f^{-1}og^{-1})(11) =$ []
a) -1
b) 1
c) 0
d) -2

3. If $f(x) = \alpha x + \beta$ and $f = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$, then the values of $\alpha + \beta$ are [] a) 2, -1 b) -2, 1 c) 3, -1 d) -2, -1

PLANE GEOMETRY

- 1. In the following rectangle, let P be the point in its interior with distances from the four corners as shown. Then the value of x.
 - a) $\sqrt{127}$
 - b) $\sqrt{73}$

А

 \bigwedge_{80}

D

B

- c) $\sqrt{55}$
- d) 13
- 2. In the given figure $\angle A = 80^\circ$, $\angle B = 60^\circ$, $\angle C = 2x^\circ$ and $\angle BDC = y^\circ$.BD and CD bisect angles B and C respectively. The values of x and y is respectively, are []
 - a) 10°, 70°
 - b) 20°, 130°
 - c) 15°, 150°
 - d) 25°, 100°

3. Secants *EDC* and *EBA* intersect a circle centered at O, making a diameter and a chord. If AB = 2DE and If $m \angle AEC = 18^\circ$, then $m \angle COA =$ []

a) 36°

POLYNOMIALS

1. If the polynomial f(x) is such that f(x) = 1 - f(1-x), then the value of

$$f\left(\frac{1}{999}\right) + f\left(\frac{2}{999}\right) + \dots + f\left(\frac{998}{999}\right) =$$
a) 998
b) 499
c) 999
d) 498

A biquadratic polynomial f(x) has zeroes – 2, 3, 5 and 7. If f(0) = 1 and f(x) is divided by 2. (x-1), then the remainder is [] d) $\frac{13}{29}$ a) $\frac{18}{23}$ c) $\frac{24}{35}$ b) $\frac{14}{20}$ If $f(x+3) = x^2 + x - 6$, then the factor of f(x) is 3. ſ] a) (x – 1) b) (x - 3)d) (x - 5)c) (x - 4)

TRIGONOMETRY

- 1. Statement I: $\cos x + \cos y = \frac{1}{3}$, $\sin x + \sin y = \frac{1}{4} \Rightarrow \cos(x + y) = \frac{-7}{25}$ [] Statement – II: $\sin x + \sin y = \frac{1}{4}$, $\sin x - \sin y = \frac{1}{5}$ then $4\cot\left(\frac{x - y}{2}\right) = 5\cot\left(\frac{x + y}{2}\right)$ a) only I is true c) Both I and II are true b) only II is true d) Neither I nor II are true 2. The period of $f(x) = \cos^{-1}(\cos x)$ is []
 - a) 2π b) $2^2\pi$ c) 2^3x d) $\frac{\pi}{2}$

3.
$$\sin^2 \theta = \frac{(x+y)^2}{4xy}$$
 is possible only, when
a) $x > 0, y > 0$ and $x \neq y$
b) $x > 0, y > 0$ and $x = y$
c) $x < 0, y < 0$ and $x = y$
d) all the above.

4. If
$$\tan(\pi \cos \theta) = \cot(\pi \sin \theta)$$
, then the value of $\cos\left(\theta - \frac{\pi}{4}\right) =$ []
a) $\frac{1}{2\sqrt{2}}$ b) $\frac{1}{\sqrt{2}}$ c) $\frac{1}{3\sqrt{2}}$ d) $\frac{1}{4\sqrt{2}}$

SETS AND RELATIONS

1. Among the following diagrams illustrate the relationship among the set of natural numbers, the set of square number, the set of primes, and the set of even inegers is []

- 2. If $n(A \cap B) = 10$, $n(B \cap C) = 20$ and $n(A \cap C) = 30$, then the greatest possible value of $n(A \cap B \cap C)$ is []
- a) 15 b) 20 c) 10 d) 4 3. The set $\{x : (x-2) (x-3) > 0\}$ is equal to a) $\{x : 2 < x < 3\}$ b) $\{x : x < 3\} \cup \{x : x < 2\}$ c) $\{x : x > 3\} \cup \{x : x < 2\}$ d) None of these

SURDS

1.
$$x\sqrt{x + \sqrt{x^2 + \sqrt{x^3 + \dots}}} =$$
 []
a) $\sqrt{x^3 + \sqrt{x^4 + \sqrt{x^5 + \dots}}}$ b) $\sqrt{x^3 + \sqrt{x^6 + \sqrt{x^{11} + \dots}}}$
c) $\sqrt{x^3 + \sqrt{x^6 + \sqrt{x^9 + \dots}}}$ d) $\sqrt{x^3 + \sqrt{x^6 + \sqrt{x^{12} + \dots}}}$
2. If $\sqrt{\sqrt{27} + \sqrt{15}} = \sqrt[4]{3}(\sqrt{a} + \sqrt{b})$, then []
a) $a = 2, b = 5$ b) $a = 1/2, b = 5/2$ c) $a = 1, b = 5/2$ d) $a = 1, b = 5$
3. If $x > 3$, then the positive square root of $2x - 1 + 2\sqrt{x^2 - x - 6}$ is []
a) $\sqrt{x - 3} + \sqrt{x + 2}$ b) $\frac{1}{\sqrt{2}}(\sqrt{x - 3} + \sqrt{x + 2})$
c) $\frac{1}{\sqrt{2}}(\sqrt{x - 2} + \sqrt{x + 3})$ d) $\sqrt{x - 2} + \sqrt{x + 1}$

X- CLASS

INTEGRATIONS

1.
$$\int \left(\sum_{r=0}^{\infty} \frac{x^{r} 3^{r}}{r!}\right) dx = [$$
[1]
a) $e^{x} + c$ b) $\frac{e^{3x}}{3} + c$ c) $\frac{-3}{1-3x} + c$ d) $3e^{3x} + c$
2. If $\int \frac{3\cos x - 2\sin x}{4\sin x + 5\cos x} dx = Ax + B \log |5\cos x + 4\sin x| \ then (A, B) = [$ [1]
a) $\left(\frac{7}{41}, \frac{22}{41}\right)$ b) $\left(\frac{22}{41}, \frac{7}{41}\right)$ c) $\left(\frac{15}{41}, \frac{7}{21}\right)$ d) $\left(\frac{7}{21}, \frac{15}{41}\right)$
3. Assertion (A) : $\int (2x\tan x \sec^{2}x + \tan^{2}x) dx = x \tan^{2}x + c$ [
Reason (R) : $\int (x f'(x) + f(x)) dx = x f(x) + c$
The correct answer is
a) Both (A) and (R) are true and (R) is the correct explanation of (A)
b) Both (A) and (R) are true and (R) is not the correct explanation of (A)
c) (A) is true but (R) is false d) (A) is false but (R) is true
4. $\int \frac{x^{2} + 1}{x^{2} + 1} dx = [$ [1]
a) $\frac{1}{\sqrt{2}} Tan^{-1} \left(\frac{x^{2} - 1}{\sqrt{2x}}\right) + c$ d) $\sqrt{2} Sin^{-1} \left(\frac{x^{2} - 1}{\sqrt{2x}}\right) + c$
5. If $\int \frac{4e^{x} + 6e^{-x}}{9e^{x} - 4e^{-x}} dx = Ax + B \log(9e^{x} - 4e^{-x}) + C$ then [
a) $A = -\frac{19}{36}, B = \frac{35}{36}, C = 0$ b) $A = \frac{35}{36}, B = -\frac{19}{36}, C = 0$
c) $A = -\frac{19}{36}, B = \frac{35}{36}, C \in \mathbb{R}$ d) $A = \frac{35}{36}, B = -\frac{19}{36}, C \in \mathbb{R}$

PROBABILITY

- 1. If 4 different biscuits are distributed among 3 children at random, the probability that the first child receives exactly one biscuit is []
 - a) $\frac{32}{81}$ b) $\frac{27}{81}$ c) $\frac{17}{81}$ d) $\frac{1}{81}$

The probabilities of a problem being solved by two students are $\frac{1}{2}$ and $\frac{1}{3}$. The probability that the 2. problem being solved is [] a) $\frac{2}{3}$ b) $\frac{1}{6}$ c) $\frac{1}{2}$ d) $\frac{1}{3}$ 3. An urn A contains 8 black balls and 5 white balls. A second urn B contains 6 black and 7 white balls. The probability that a blind folded person in one draw shall obtain a white ball ſ 1 a) 5/13 b) 7/13 c) 6/13 d) 5/26 A card is drawn at random from a pack, the probability that it may be either king or queen is : 4.] a) $\frac{11}{13}$ c) $\frac{1}{26}$ b) $\frac{1}{12}$ d) $\frac{2}{13}$ 5. If P (A \cup B) = 0.65, P (A \cap B) = 0.15, then P(\overline{A}) + P(\overline{B}) = (EAMCET-2003) ſ] b) 0.2 c) 0.8 d) 0.6 a) 1.2 **FUNCTIONS** Let $f: N \to R$ such that $f(x) = \frac{2x-1}{2}$ and $g: Q \to R$ such that g(x) = x+2 be two functions. Then 1. $(gof)\left(\frac{3}{2}\right)$ is equal to [] b) $\frac{7}{2}$ a) 3 d) not defined c) 1 If $f: R \to [0,\infty)$ defined by $f(x) = 10^x$ then $f^{-1}(x) =$ 2. [1 b) x^{10} c) $\log_{10} x$ d) 10^{*x*} a) $\log_{x} 10$ The domain of $f(x) = \frac{1}{\sqrt{(x-1)(x-2)(x-3)}}$ is 3. Γ 1 a) $(-\infty, 1) \cup (3, \infty)$ b) $(1, 2) \cup (3, \infty)$ c) $(-\infty, 2)$ d) R If $f: R \to R$ is given by $f(x) = \frac{a^x}{a^x + \sqrt{a}}$ $\forall x \in R$, then 4. ſ] $f\left(\frac{1}{1997}\right) + f\left(\frac{2}{1997}\right) + \dots + f\left(\frac{1995}{1997}\right) + f\left(\frac{1996}{1997}\right) =$ a) 997 c) 1997 d) 1998 The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is 5. ſ] a) [2, 3] b) [2, 3) c) [1, 2] d) [1, 2) If f(x) is a function such that f(x + y) = f(x) + f(y) and f(1) = 7, then $\sum_{r=1}^{n} f(r) =$ [6.] d) $\frac{7n(n+1)}{2}$ a) $\frac{7n}{2}$ b) $\frac{7(n+1)}{2}$ c) 7n(n+1)14

7.	The domain of the fund a) {1, 2, 3, 4}	ction $f(x) = {}^{16 \cdot x}C_{2x \cdot I} + {}^{2}$ b) {1, 2, 3}	c) $\{2, 3, 4\}$	d) {2, 3}	[]
8.	$f(x) = \cos^2 x + \cos^2 \left($	$\left(\frac{\pi}{3}+x\right)-\cos x.\cos\left(\frac{\pi}{3}+x\right)$	x) is		[]
	a) an odd function	b) an even function	c) a periodic function	d) $f(0) = f(1)$		
		LIMITS AND C	CONTINUITY			
1.	If $f(9) = 9$, $f'(9) = 4$ t	hen $\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} =$			[]
	a) 2	b) 4	c) – 2	d) – 4		
2.	$\lim_{x\to 0} (\cos x)^{\cot x}$ is equal	to			[]
	a) 1	b) 2	c) 3	d) 4		
3.	$Lt_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\frac{\pi}{4} - x} =$				[]
	a) $\sqrt{2}$	b) – $\sqrt{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{-1}{\sqrt{2}}$		
4.	If $f(x) = (1 + \tan^2 x^2)$	$\frac{1}{2x^4}$ is continuous at x = 0	0, then $f(0) =$		[]
	a) e	b) \sqrt{e}	c) $\frac{1}{e}$	d) $\frac{1}{\sqrt{e}}$		
5.	If $f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{x}}{x} \\ 2x^2 + 3x \end{cases}$	$\frac{\sqrt{1-kx}}{x-2} for -1 \le x < 0$) is continuous at $x = 0$ t	hen $k =$	[]
	a) – 4	b) – 3	c) –2	d) – 1		
6.	$f(x) = (1 + x)^{5/x}, x \neq 0$ a) continuous	$f(0) = e^5$, at x = 0 f is b) discontinuous	c) not determined	d) none	[]
		DIFFEREN	TIATION			
1.	$\frac{d}{dx}\left[\frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\log \frac{a^2}{2}\right]$	$g\left(x+\sqrt{a^2+x^2}\right)\bigg] =$			[]
	a) $\frac{1}{\sqrt{a^2 + x^2}}$	b) $\sqrt{a^2 + x^2}$	c) $\frac{2x}{\sqrt{a^2 + x^2}}$	d) $\sqrt{a^2 - x^2}$		

2.	If $\sqrt{1-x^2} + \sqrt{1-y^2} = 0$	$a(x-y)$ then $\frac{dy}{dx} =$			[]	
	a) $a\sqrt{\frac{1-y^2}{1-x^2}}$	b) $\sqrt{\frac{1-x^2}{1-y^2}}$	c) $\sqrt{\frac{1-y^2}{1-x^2}}$	d) $a\sqrt{\frac{1-x^2}{1-y^2}}$			
3.	If $x^2 - y^2 = a(x - y)$ as	nd $x \neq y$, then $\frac{dy}{dx} =$			[]	
	a) 0	b) 1	c) –1	d) 2			
4.	The derivative of Sin ⁻	$1\frac{2x}{1+x^2}$ w.r.t $Tan^{-1}\frac{2x}{1-x^2}$	$\frac{1}{2}$ is		[]	
	a) 1	b) -1	c) 2	d) 0			
5.	If $y = e^{\sin^{-1}x}$, then $(1 - x)$	$(-x^2) y_2 - xy_1 =$			[]	
	a) 0	b) 1	c) y	d) 2y			
		STATIS	TICS				
1.	The A.M. of the series	${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots {}^{n}C_{n}$ is			[]	
	a) $\frac{2^n}{n+1}$	b) $\frac{2^n}{n}$	c) $\frac{2^{n-1}}{n+1}$	d) $\frac{1}{n+1}$			
2.	2. The mean weight of 150 students in a certain class is 60 kilograms. The mean weight of boy the class is 70 kilograms and that of the girls is 55 kilograms, then the number of boys and girls						
	a) 100, 50	b) 50, 100	c) 75, 75	d) 60, 90	L]	
3.	If the standard deviation $\dots - 2x_n - 3$ is	on of x_1, x_2, \dots, x_n is 3.5,	then the standard deviat	ion of $-2x_1 - 3$, – 2x ₂ [
	a) – 7	b) – 4	c) 7	d) 1.75			
4.	The mean of the num following gives possib	bers a, b, 8, 5, 10 is 6 a le value of a and b	and the variance is 6.80). Then which	one of	f the	
	a) $a = 0, b = 7$	b) $a = 5, b = 2$	c) $a = 1, b = 6$	d) $a = 3, b = 4$	1		
		POLYNO	MIALS				
1.	If a polynomial f (x) is	such that $f(0) = 2, f(1)$	= 3, f(x + 2) = 2 f(x) - f	(x + 1), then f	(5) =		
	a) 5	b) 10	c) 8	d) 6	[]	
2.	If $f(x) = 2x^4 - 13x^2 + $	$-ax+b$ is divisile by x^2	-3x+2, then (a,b) =		[]	
	a) (-9, -2)	b) (6,4)	c) (9,2)	d) (2,9)			
3.	If $f(x) = x^4 - 12x^3 + 1$	$7x^2-9x-7$, then $f(x-1)$	+3)=		[]	
	a) $x^4 - 37x^2 - 123x - 1$	10					
	b) $x^4 - 25x^2 - 73x - 85$	5					
	c) $x^4 - 13x^3 - 12x^2 - 13x^3 - 12x^3 - 12x$	5					
	d) $x^4 - 47x^2 - 125x + 10^{-1}$	165					

4. If
$$\alpha, \beta, \gamma$$
 are the roots of $x^3 - px^2 + qx - r = 0$, then $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2} =$ []
a) $\frac{q^2 - 2pr}{r^2}$ b) $\frac{p^2 - q}{pq - r}$ c) $\frac{p^2 - 2q}{r^2}$ d) 0
TRIGONOMETRY
1. If $\tan\left[\frac{\pi}{2}\sin\theta\right] = \cot\left[\frac{\pi}{2}\cos\theta\right]$, then $\sin\left(\theta + \frac{\pi}{4}\right) =$ []
a) $\pm \frac{1}{2}$ b) $\pm \frac{1}{\sqrt{2}}$ c) $\pm \frac{1}{2\sqrt{2}}$ d) 2
2. If $1 + \sin x + (\sin x)^2 + \dots = 4 + 2\sqrt{3}, 0 < x < \pi, x \neq \frac{\pi}{2}$, then $x =$ []
a) $\frac{\pi}{6}, \frac{\pi}{3}$ b) $\frac{\pi}{3}, \frac{5\pi}{6}$ c) $\frac{2\pi}{3}, \frac{\pi}{6}$ d) $\frac{\pi}{3}, \frac{2\pi}{3}$
3. The solution of $(81)^{\sin^2 x} + (81)^{\cos^2 x} = 30$ in $\left[0, \frac{\pi}{2}\right]$ is []
a) $\frac{\pi}{6}, \frac{\pi}{3}$ b) $\frac{\pi}{3}, \frac{\pi}{2}$ c) $\pi, \frac{\pi}{2}$ d) $\frac{\pi}{4}, \frac{\pi}{2}$

SETS AND RELATIONS

1. If T = Set of all triangles in a plane, I = Set of all isosceles triangles, and S = Set of all acute trianges, then among the following diagrams describes the above sets is []

If $n(A \cap B) = 5$, $n(A \cap C) = 7$ and $n(A \cap B \cap C) = 3$, then the minimum possible value of n 3. $(B \cap C)$ is] [a) 0 b) 1 c) 3 d) 2

MENSURATION

1. The sum of three times a number and two times the other is 2 times the difference of thrice the first number and twice the second. If the first number is greater than second, then find the ratio of two numbers. 1 [a) 1 : 3

- A rectangular sheet of paper 22 cm long and 10 cm broad can be curved to form the lateral surface area of right cylinder in two ways, then the difference between the volumes of the two cylinders thus formed is

 a) 200 cm³
 b) 210 cm³
 c) 250 cm³
 d) 252 cm³
- 3. If the slant height of a conical tent is 35 m and its diameter is 56 m then the cost of constructing at 2 paise per m² is []
 - a) Rs. 600.50 b) Rs.61.6 c) Rs.620 d) Rs.449.60